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ABSTRACT 

When the predicted position of a satellite contains normally 

distributed errors,  the position uncertainty can be described by a 

Spherical Error Probable or SEP.    The SEP is calculated by inte- 

grating the three-dimensional normal probability density function 

over a spherical volume.    The SEP is set equal to the radius of 

that volume which contains the satellite with 50% probability.   In 

this report the authors present four methods for integrating the 

density function and finding the SEP.    The three normal variates 

in the density function are assumed to be independent and unbiased 

with known variances. 
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UST OF ABBREVIATIONS AND SYMBOLS 

Denote the three axes of an orthogonal coordinate system. 
Also denote three random errors in position measured 
along the orthogonal axes. 

Denote the standard deviations of the position errors 
measured along the x,  y and z axes,  respectively. 

Radius of a spherical volume. 

Spherical Error Probable. 

The first estimate for the SEP. 

The second estimate for the SEP. 

The i + l8t estimate for the SEP. 

An incremental change in the radius R-. 

Probability. 

The probability that a point lies in a sphere of radius R^. 

An Incremental change in the probability P^. 

The partial derivative of P with respect to R. 

(dP/flR)i      The partial derivative of P with respect to R evaluated at 
Rj. 

L,  K,  H       The predicted position coordinates of a point in space. 

CEP Circular Error Probable. 

i i 

The standard normal variate. 

The radial axis in a spherical coordinate system. 

iv 
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al(C2>   n)     A number calculated from the recursion formulas in 
Appendix B. 

J.  n Summation indices. 
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SECTION 1 

; INTRODUCTION 

1. 1   Purpose of the Report 

In this paper we report four methods of solving Eq.  (1-1) for R 

when 0«,   o   ando, are known and P is set equal to 0. 5. 
Ay 2 

-R .^J ->j^J7 

pi ~w dx dy dz 

(1-1) 

Eq.   (1-1) describes the integration of an unbiased,   three-dimensional, 

normal probability density function over a spherical volume.    R is the 

radius of the sphere; x,  y and z are independent random variables, 

and P is a probability.    For P set equal to 0. 5,  we define R as the 

Spherical Error Probable (SEP). 

1.2  Uses for the SEP 

The SEP is useful as a measure of position uncertainty in three 

dimensions.    It is a single number,  like 3250 ft,  describing the un- 

certainty in the location of one vehicle at a given time.    The SEP is 

applicable to problems in satellite tracking,  missile defense,  sub- 

marine navigation and air traffic control.     '*°'(')   As an example. 

**. 

 .— 
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we describe in the next four paragraphs a SEP that might be computed 

in predicting the location of a manned orbiting laboratory. 
i 

i i 

A manned orbiting laboratory in a near-earth orbit requires re- 

supply.    The supply mission is to be flown by a second missile,  the 

transporter,  and a rendezvous and docking maneuver is to be executed 

when the transporter reaches the laboratory.    A successful mission 

hinges on an accurate prediction of the laboratory's location at the 

time of rendezvous.    The mission planners are asked to predict the 

laboratory's future position by using radar measurements made just 

before the transporter is launched. 

The mission planners would like to make an absolute prediction 

like the following: 

"The laboratory will be at latitude 20° N,  longitude 35    W 
and 100 nm altitude at 2117 Greenwich Mean Time. " 

They cannot make such a statement, however,  because the radar data 

contains normally distributed errors.    The present location of the lab- 

1 
oratqry is uncertain so its future position cannot be predicted exactly; 

the predicted latitude, longitude and altitude contain the unknown ran- 

dom errors x, y and z, respectively. 

The mission planners choose to compute a SEP to describe the un- 

certainty in the future position of the laboratory. Their computed SEP 

lis 8000 feet.    The mission planners use the SEP to make the following 



probablistic statement to the transporter crew: 

"The laboratory will be within 8000 feet of 20° N 
latitude. 35° W longitude and 100 nm altitude at 2117 
Greenwich Mean Time with 50% probability." 

The transporter crew thus has an estimate for the uncertainty in the 

laboratory's location.    Upon reaching the predicted point of rendez- 

vous,  the crew will probably have to search through a sphere of at 

least 8000 foot radius to find the laboratory. 

The previous example illustrates the information implied in the 

Spherical Error Probable. If a vehicle is said to be located at point 

L.  K and H with a SEP of 8000 feet,  we immediately know that: 

(1) The location of the vehicle is uncertain. 

(2) The three position coordinates,   L,   K and H,  contain normally 
distributed errors. 

(3) The probability density function is so shaped that 50% of the 
probability is contained in a sphere of 8000 foot radius.    The 
sphere is centered on the mean predicted location of the 
vehicle. 

A SEP can be formulated to describe position uncertainties for 

many vehicles - satellites,  aircraft,   submarines,  and missiles.    In 

this report,  however,  we restrict the SEP application to those three- 

dimensional problems where the random position errors are normally 

distributed,  unbiased and independent. 



1. 3   The Three-Dimensional Normal Distribution 

If three random variables,  x,  y and z, are independent, unbiased 

and normally distributed,  their joint three-dimensional probability 

density function is given by the equation'  ': 

f (x,  y,   z) = 1  

(2n)3/2o    a    o 
x     y    z 

exp ■i{ J       y2 

T 
) 

(1-2) 

If the density function, f (x,  y,  z),  is integrated over a closed volume, 

a probability,  P,  results.    If the three random variables describe the 

position of a point,  P is the probability that the point is located some- 

where in the volume.   In this report the closed volume is a sphere. 

R is defined as the radius of the sphere and Eq.   (1-1) describes the 

probability integral for P (2). 

P = 
1 

(2*)     o    o x   y   z if hi ) 

dx dy dz 

-R   -V^J A/R2-^-^ 
(l-l) 

When the standard deviations, o , o o , are known and R is 

specified, Eq. (1-1) can be solved for P. 'A We, however, are 

interested in the complementary problem.    We seek a solution for R 

when P is given.   In particular we want R whenox, o     and o    are 



known and P is set equal to 0. 5.    This R is defined as the Spherical 

Error Probable or the SEP. 

The probability limit,  in this case 0. 5 or 50%,  is not unique. 

Any limit,   say 95%,  can be used in the definition of the SEP.    The 

50% limit,  however,  is consistent with the definition of the two-dimen- 

sional Circular Error Probable (CEP) used in missile accuracy 

studies.^  ' 

1. 4 Outline of the Paper 

In the next four sections we outline four methods for computing 

the SEP when0  , o   and o   are given.    In Section 2,  for example,   we 

use the CEP curve to approximate the SEP in the special case when 

o    = o .    In Section 3 a paper and pencil solution is developed. x        y 

Section 4 describes a computer method for finding the SEP,   and 

Section 5 summarizes the computer data in a graphical solution. 

The paper  closes with three appendices.    The first appendix 
i 

extends the approximation method of Section Z to the cases where 

0x ^ %*    ^ie secon^ appendix outlines H.   W.  Lilliefors' solution 

of Eq.   (1-1).    The third appendix contains a computer program and 

sample data. 

The reader with standard deviations, 0   , 0   and 0 ,  in hand and x     y z 

a deadline to meet should proceed directly to Fig.  5.2 in Section 5. 

. 
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For a wide range of standard deviations,  Fig.  5. Z permits a direct 

reading of the SEP. 



SECTION 2 

THE FIRST SOLUTION:   A METHOD OF ESTIMATING THE SEP 

2. 1  Outline of the Estimation Method 

In general,  the SEP cannot be found by a direct integration of Eq. 

(1-1).    We cannot write a mathematical equation that expresses R in 

terms of P, o   , o    and o .    We can, however,  estimate the SEP by 

looking at special cases.    In this section we show how the SEP can be 

estimated when o   and o    are equal and x y 

(1) Small compared to oz. 

(2) Large compared to az. 

(3) Equal to o z. 

(4) Equal to one-half of a   . 

Here we also introduce the normalized function, SEP/CJ   ,  because it z 

is more easily plotted than the SEP. 

2.2  The SEP When o    and a    are Equal and Small 

In Sec.   1. 3 we wrote down Eq.  (1-2),  the three-dimensional 

normal density function: 

f (x,  y,  z) = ——     exp 
(2tr)   oxoyoz K^^i)] {i-z) 

If two of the standard deviations in this expression are equal and 

smaller than the third deviation,  the three-dimensional distribution 
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look$ one*dimensional.    For example,   if ox and Oy are equal and 
i 

smaller than oz,  the three-dimensional distribution looks like a one« 

dimensional distribution in the variate z.    In the limit, as the ratio 

\lüz approaches zero,  the SEP calculation reduces to the problem 

of finding the half-length of a straight line.    The full-length of the 

straight line includes the location of the random point with 50% prob- 

ability. 

The probability equation to be solved is just: 

R 

P=—I       /   exp      -    _L_^   I    dz (2-1) 

-R 

We seek R when o   is given and P is set equal to 0. 5. 

If q is substituted for z/oz, the integrand in Eq.  (2-1) becomes 

the standard normal density function for which there are tabulated 

(4) 
solutions« Writing Eq.  (2-1) in the standard form we get: 

R/0z 

# / exp [" K ] dq ,2■2, P =    ^_ 

-R/ö z 

We use the tables and find that when R/oz = 0.674,  P equals 0. 5. 

Thus,  foro    and o   equal to zero,  the ratio SEP/0, has the value 

0.674.    This result is plotted in Figure 2. 1,  Sec.  2.6,  as a point 

8 

•, 



on the ordinate where ox/oz = 0.    This point is plotted as the first 

step in constructing a curve of SEP/G    versus 3x/oz under the special 

condition that ox equals Oy. 

2. 3  The SEP Whenox and uv are Equal and Large 

We have seen that the three-dimensional density function looks 

one-dimensioned when two of the standard deviations are equal and 

small compared to the third.    If,  conversely,  two of the standard 

deviations are equal and large compared to the third deviation, the 

distribution looks two-dimensional.    If ox and o    are equal and much 

larger than 0,
z,  the densit/ function looks two-dimensional in the 

variates x and y. 

Calculation of the SEP reduces to the problem of finding the radius 

of a circle.    The circular area contains the location of the random 

point with 50% probability.    The desired radius is commonly called 

the Circular Error Probable (CEP).    The CEP is usually used to 

specify the probable impact error of a long range missile. 

The two-dimensional probability integral is given by Eq.  (2-3). 

R V7T 

P = exp -?(4-+vr)]dx<iy  u"3) 

-R     -VR2-x2 

  



A solution for this integral is graphed in Ref.   3.    For 0y/ax greater 

than 1/3 the SEP is approximated by Eq.   (2-4). 

SEP   =   0.59 (ox   +  öy) (2-4) 

In our case,  with o    and ax equal and much larger thanö z,  the SEP is 

given by the expression 

SEP   =   1. 18 ox   =   1.18 oy (2-5) 

Equation (2-5) is made more convenient if we divide both sides of 

the equation by oz. 

^   =    1.18 -jr (2-6) oz z 

This result is plotted in Fig. 2. 1 as a straight line with slope equal 

to 1. 18 and intercept at  o^/ oz = 0.    The curve for ax = 0y •  in Fig. 

5.2. Sec.  5,  can be used to verify that this expression for the SEP 

is accurate when the ratio ^ I a    is greater than approximately 4. 5. 

2.4 The SEP when ox,  o    and o^ are All Equal 

(When all three standard deviations, ox, o    andoz,  are equal,   the 

probability density function retains its three-dimensional form.    We, 

however,  can simplify the integral equation for P by changing to 

2 2        2       2 spherical coordinates and substituting P    for x    + y    + z    in the inte- 

grand.    The new expression is then: 

10 



R    2^       n/2 

-^   P sirwMpcWd^       (2-7) 
2a_c l 

J.  S.   Toma,  in Ref.   1,   reports that if P = 0. 5,  Eq.   (2-7) can be 

solved to give the result that the 

SEP   =    1.53820z (2-8) 

If we divide both sides of this expression by a ,  Eq.   (2-9) appears: 

ctrp 
22Z- =   1.5382 (2-9) 

0z 

Thus,   for   ox =   0   = oz we have the result that SEP/ 0
Z = 1. 5382.    This 

result is plotted in Fig.  2. 1 as a point at 0x/az - 1. 

2. 5  The SEP when o    = o    = 0. 5 <?, 

The last special case we examine is that for  o   and a   equal to x y 

0. 5o        The SEP is calculated using the work of H.   W.  Lilliefors in 

Ref.  2.    He plots the probability,   P,  versus o    when R =  1.    His Fig. 

2 showE that P = 0. 5 when 0
X = 0. 5,  0

y = 0. 5 and 0
Z = 1.    Thus,  for 

ox/oz = 0. 5,  the ratio, SEP/o   ,   must be equal to one. 

2.6   The Predicted SEP Curve for ox and 0    Equal 

In Sec.  2.2 through 2. 5 we have computed one line and three dis- 

crete points which describe the behavior of the function SEP/0 ,.    We 

11 



have plotted these points and the line in Fig.   Z. 1 and we now draw in 

a dotted line to complete the curve.    This graph can be used to estl- 

* mate the SEP when o   and o   are equal.      The reader should note this 

SEP 

Slope - 1.18 

Figure 2. 1   The predicted SEP/o   curve when o     = a 

special condition.    When ox and o    are not equal,  the SEP must be 

estimated by the methods of Appendix A. 

*    The curve can be used to compete the SEP when any two stand- 
ard deviations are equal.    The reader need only interchange the 
subscripts,  x,  y and z, on the standard deviations. 

12 



To find a SEP given ox = Oy,   oz and Fig.  2. 1,   we first find the 

ratio 0
x/oz.    If the ratio has the value 2.25,  for example,  we enter 

Fig.  2. 1 at the bottom where ox/oz = 2.25.    We proceed vertically 

upward to the curve and read that the SEP/a2 has the value 2.85. 

The SEP is then computed by multiplying 2  85 by the standard devia- 

tion,   oz. 

A more exact solution can be found by using paper,  pencil,  a desk 

calculator and the iterative method of Sec.  3. 

13 
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SECTION 3 

THE SECOND SOLUTION: 
AN ITERATIVE METHOD OF FINDING THE SEP 

3. 1   Outline of the Method 

Given one set of standard deviations and P set equal to 0. 5,   a 

SEP can be calculated using paper,  pencil and a desk calculator.   The 

method uses H.   W.  Lilliefors' solution for Eq.   (1-1) and we solve by 

iteration for the SEP. 

3. 2  Lilliefors* Solution 

Lilliefors' solution (see Appendix B) for the three dimensional 

probability,   P,  has the form: (1) 

fr, ^(n+l 

•   (-l)(n + 1) o^,  n) 

~   2(n+l)ff (2n-l) n"l    ^ '   Oy 0x Oz      j.01 

(-1) 
J 

j!(2oz2)J 

(j+n+f) (J+n-^.-fJ+j) 
(3-1) 

This solution is valid when R = 1.    For R not equal to one,  Lilliefors' 

solution has the revised form: 

P--ypTv    j; 
(n+l) 

(-1) *i{C2,n) 

n-1    2 
(n+l)    .   v(2n-l) f4 (m J-o 

(j+n+i) (j+n4)...(j4) 

(-1) m\ 
(3-2) 

15 



To find the SEP,  we set P equal to 0. 5 and solve for R.    The equation, 

however,  is too complicated to be solved in closed form.    We use an 

iterative procedure. 

3. 3 The Iterative Procedure 

The first step in the iteration is to specify 0
X,   ö    and 0_.    Next, 

we make an initial estimate fore the SEP,  say R = R0.    70,   ox,   Oy and 

0    are then substituted into Eq.  (3-2) and we solve for P.    If each of 

the normalized standard deviations,   0X/R0.   ay^0 
and  0z^o>  is 

greater than about 0.4,  the two infinite series in Eq.   (3-2) can each 

be truncated after 10 terms. 

The solution proceeds by comparing the computed P,   say it's P0, 

with 0. 5.   If P0 is equal to 0. 5,  we define the initial estimate,  R0,  as 

the SEP.    The solution is deemed complete for the given values of 0
X, 

a    and oz.    If,  however,   PQ is not equal to 0. 5,  we make a new esti- 

mate for the SEP,  say R = Rj,  and repeat the procedure. 

If the reader has one set of standard deviations,  paper,  pencil and 

some patience,  this procedure will produce a SEP in a few hours.    The 

calculation time is reduced if you have a good first estimate for the 

SEP.    If,  however,  many sets of standard deviations are to be used, 

the time required to calculate the exact SEPs is enormous.    In this 

case we recommend the computer solution in Section 4. 

16 
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SECTION 4 

THE THIRD SOLUTION: 
A COMPUTER METHOD OF FINDING THE SEP 

4. 1  Outline of the Method 

The computer solution for the SEP mechanizes the iterative pro- 

cedure outlined in Sec.   3.      The computer method,  however,  forces 

us to deal with three mathematical problems that we ignored in Sec.   3. 

First,  we have to identify the sets of standard deviations for which 

Lilliefors' series solution will not converge.    Second,  we must find 

alternate methods for finding the SEP when the series solution diverges, 

Third,  we need to write a mathematical rule for estimating the SEP. 

4. Z Conditions for Convergence 

H.   W.   Lilliefors' series solution for P is used in the search for 

the SEP.    The revised form of Lilliefors1 solution is given by Eq.  (4-1), 

n= 1   ^ 

(-l)(n+1) ai(C2,  n) 

T 

(C" mi "° ml) 
(-1)J 

TU 

i 

(j+n+j) (j+n-2)...(j+7) (4-1) 

*   A listing of the computer solution is presented in Appendix C. 

17 



When any one of the normalized standard deviations,   o   /R,   Of /R or x y 

0
X/R,  is less than approximately 0.2,   Eq.   (4-1) will not converge to 

* 
a meaningful value for P.      If,  for example, 0

Z/SEP = 0. 11 and 100 

terms are used in each series,   Eq.  (4-1) may give a probability like 

2 x 10  ,  or -0.93,  or 25.7.    None of these numbers are admissible 

values for P.    The probability can only have a value between zero and 

one.    When calculating the SEPs for many sets of standard deviations, 

we must identify those sets of standard deviations for which the com- 

puter solution will not converge. 

Inadmissible sets of standard deviations are identified by testing 

the ratios 0  /SEP,  a
v/SEP and  o /SEP against 0.2,   the convergence x y z * 

limit.    We form the ratios by dividing the standard deviations by an 

estimate for the SEP.   The SEP is estimated by the methods of Sec.  2 

or Appendix A.    If one of the ratios,  0
Z/SEP for example,  is less than 

0.2,  we conclude that Eq.  (4-1) cannot be used to find the exact SEP 

for that set of standard deviations.    We look for another method of 

finding the SEP for that set. 

*   We are not concerned here with absolute convergence or 
divergence.    We define Lilliefors' solution to be convergent 
if we get a meaningful value for P by using a reasonable 
number of terms in each of the two infinite series.    In this 
paper we call 100 terms reasonable. 

18 



4, 3  Alternate Solutions for the SEP 

If a set of three deviations contains one element,   o    for example, 

that fails the convergence test,  we can choose to ignore  <?   and solve 

for a SEP in two dimensions.    The SEP,  so calculated,  is obviously 

an approximation to the true SEP since we assume that a
z = 0 when, 

in fact,  it is a non-zero positive number.    The approximation is good, 

however,  when   0
Z/SEP is less than about 0.2. 

The two-dimensional SEP can be calculated directly from Eq. 

(3) 
(4-2) when the ratio, 0

V/ 0
X,   is greater than about one-third. 

SEP   =   0.59 (ox + ay) (4-2) 

The SEP can also be calculated by iteration if we substitute Eq.  (4-3) 

(2) for Eq.   (4-1) in the computer solution.     ' 

(-l)(n+1)  <M(C2.  n) 

'   t\     2nn! (VR^^Vx/R) 

The computer program in Appendix C incorporates both equations 

(4-1) and (4-3).    The program also contains a rule for selecting R  , 

the initial estimate for the SEP.    This rule and a method for upgrading 

the estimate are discussed in the following paragraphs. 

4.4  A Rule for Selecting R0 

As noted in Sec.  4. 1,  the computer program mechanizes an iter- 

ative search for the SEP.    The search is started,  for a given set of 
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Standard deviations,  by estimating the SEP.    If the first estimate,   R0, 

causes the probability,  P,  to equal 0. 5,  the iterative search is stopped 

and the SEP is equated to R0.    In the usual case, however, the first 

estimate for the SEP is wrong and successive estimates must be made 

to drive P toward 0. 5. 

The first estimate for the SEP is made by setting R0 equal to the 

minimum value of the three ratios, o
x/0. 2,   ay/0.Z and  a

z/0.2.    This 

estimate guarantees that none of the normalized standard deviations, 

0
x/Ro,   0y/Ro and 0

z/Ro.  will be less than 0.2 during the first itera- 

tion.    This choice of R   avoids the convergence problems discussed 

in Sec. 4.2. 

If R ,  the first estimate for the SEP,  is correct,  the computer 

will make one iteration,   stop,  and print out R0 as the SEP.    If the 

true SEP, however,  is much greater than R0,  the computer method 

will not converge to a solution for the SEP.    The computer will make 

two iterations,  test for a diverging solution and stop.    When the true 

SEP is less than R0,   the computer will proceed to a solution for the 

SEP by making successive estimates for R. 

If the first estimate for the SEP is not correct,  the second esti- 

mate,  Rj.  is made by adding AR0,  a  small number,  to R0.     AR0.   in 

turn,  is computed  by  dividing AP0 =  (0. 5-P0) by the first partial 
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derivative of P with respect to R evaluated at R = R0. AP is the 

error in probability resulting from the first and incorrect estimate 

for the SEP.    See Fig.  4. 1. 

1.0! 

P^   . 

0.5-- 

SEP 

Figure 4. 1     A graph of P versus R showing the 
quantities used in estimating the SEP 

The partial derivative.   (dP/dR)0i  gives the slope of the probability 

curve at R s R .   A straight line representation of this slope appears 

on Fig. 4. 1.   AP0 divided by the (dP/dR)0 gives the approximate 

change in R0 required to change P   by AP . 

*   P0 is the probability calculated for R = R  . 
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The third estimate for the SEP is made by evaluating theöP/öR, 

P,   AP and AR at R = Rj.    R2 is computed from the expression 

R2 = Rj + ARj (4-4) 

The fourth,  fifth and successive estimates are made in an analo- 

gous manner until the i     estimate causes the probability to be 0. 5. 

The probability,   P,  and the partial derivative,   öP/öR,  are calculated 

from Lilliefors' series solution of Eq.   (1-1).    The mathematical 

details appear in Appendix B. 

4. 5 Summary of the Computer Method 

The computer method produces an exact SEP for any given set of 

standard deviations.    If the accuracy requirement,  however,  is not 

too stringent, the SEP can be also found by use of normalized plots. 

These plots,  generated from computer data,  display the ratio SEP/oz 

as a function of the ratio ox/oz.    We have produced a set of these plots 

in Sec.  5.    They constitute our fourth and last method for finding the 

SEPi 
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SECTION 5 

THE FOURTH SOLUTION: 
A GRAPHICAL METHOD OF FINDING THE SEP 

5. 1   The Graph 

One SEP can be computed by the method of Sec.  4 for any set of 

standard deviations,  a„,   av and 0 .    If a large number of SEPs are 

calculated, they can be tabled as in Fig.  5. 1. 

ov (ft) o(ft) o   (ft) SEP (ft) 
X y 4w 

1 1 1.538 

.5 .55 1.045 

1 .25 .908 

Figure 5. 1    A sample tabulation of the SEP 
as a function of a  , 0    and 0

Z. 

The tabulation is useful for identifying the SEP associated with a 

given discrete set of standard deviations.    The tabulation,  however, 

reveals no obvious method of interpolating for the SEP associated 

with a set of values,   0 ,   0   and 0 ,  that is not tabled.    Much more 

information can be derived by plotting the SEP as a function of the 

standard deviations. 
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In Fig.   5.2 we have plotted the ratio SEP/o   versus the ratio 

* 
0/0    with a    as a parameter.      The curves are seen to be smooth x     z y 

and well-behaved.   Given values of 0
X,   0    and 0 ,  these curves can 

be used in a direct solution for the SEP.    No iterative calculations 

are required.    The user need only assign values to the standard devia- 

tions, form the ratios 0 /a    and 0/0   ,  locate the appropriate curve 

on the graphs and read off the ratio SEP/o   .    Since 0    is known,  the 

SEP can be computed directly from the ratio   SEP/^ by multiplica- 

tion; i. e., 

/ SEP \ 

\    **    ) 
SEP   =    f-^— )    oz (5-1) 

In the next section we work a sample problem to show how these 

curves could have been used in the satellite rendezvous problem of 

Sec.   1. 

5.2 A Sample Problem 

In Sec.   1 we described an orbiting laboratory travelling in a 

100 nm circular orbit.    We said that the laboratory was to be re- 

supplied by a second vehicle, the transporter,  which would rendez- 

vous and dock with the laboratory.    The rendezvous required a 

*   The curves are patterned on the CEP/a. curves used by 
R.  A.  Moore in Ref.  3.    The curves were drawn from 
computer data displayed in Appendix C. 
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Figur« S.2 A paraaatric graph for computing 
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precise prediction of the laboratory's position at 2117 Greenwich 

Mean Time (Zulu).    The prediction included a SEP of 8000 feet. 

If the mission planners had computed the SEP by using the curves 

in Fig.  5. Z,  they would first have used three scandard deviations to 

describe the uncertainties in the laboratory's predicted position.    If 

the deviations were 

o      (Downrange)      =   6350 ft. (5-2) 

o      (Crossrange)     =   6350 ft. (5-3) 

o      (Altitude) =   2540 ft. (5-4) z 

X'    z at 2117 Zulu,  the planners,  next,  would have formed the ratios 0
x/

0
9 

and 0../ox. 

oJa,   =   2.5 (5-6) 
X      z 

0
y/

0
x   =    1 (5-7) 

Entering Fig.  5.2 at o /o    B 2. 5,  they would have proceeded verti- 

cally upward to the curve for 0y/0x =1.    On this curve they would have 

read, for the ratio SEP/oz,  the value 3. 15.    Multiplying this value by 

oz  ■ 2540 ft.  would have produced the SEP. 

SEP   =•  3.15 x2540 ft.    =   8000 ft. (5-8) 

The same procedure can be used in computing any SEP.    The 

curves are not restricted to problems in orbital mechanics.    A SEP 

can be calculated in any three-dimensional uncertainty problem where 

2       2 2 
we can give values to the normal variances 0x •  %   anc* 0z ' 
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5. 3  Application of the Graphical Solution 

In the graphical method of finding a SEP,   we assign values to the 

standard deviations a  ,  0„ and 0 .    These values are generated by our x    y z ö 7 

study of the physics and statistics in the actual problem.    In general, 

these values will be associated with a problem coordinate system, 

like x.,  x2 and x  ,   and not with the coordinates x,   y and z.    The 

question arises as to how the values computed for the three variances 

2        2 2 in x.,  x   and x, space should be assigned to o    ,   a     and o    . 

The solution for the SEP is independent of the order of values 

assigned to CJ      o    and  o^ because Eq.  (1-1) is symmetric.    The 

equation is symmetric in the sense that the six combinations of any 

three values all have the same SEP.    See Fig.   5. 3 for one example. 

o     (ft) 
X x    ' 

a
y (ft) a

z W SEP (ft) 

1 2 3 3. 105 

1 3 2 3.105 

2 3 1 3.105 

2 1 3 3. 105 

3 1 2 3. 105 

3 2 1 3.105 

Figure 5. 3     A table showing the symmetry in the 
SEP calculation. 
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The user's computed standard deviations,    aj,    o^ and    o     can 

be assigned in any order to   o  .   o    and o   .    The same SEP will "• ' x       y z 

result for every combination.    The graphical solution,  however, has 

widest application when the largest computed deviation is assigned 

to  o,.    If the largest standard deviation is not assigned to   o      but to 

^   instead,  the ratio 0    / 0    may be larger than 3. 5 and beyond the 

curves of Fig.  5. 2. 

Finally,  we note that the SEP for mox,  mo    and mo    is just m 

times the SEP computed for 0   ,   a   and oz.    This result is not imme- 

diately obvious from Eq.   (1-1) but is apparent in Fig.   5.2.    If,  for 

example,   the standard deviations,    a   = 5 ft,   o     = 10 ft,  and a    = r x y z 

2. 5 ft, are all doubled,  the SEP goes from 3. 67 ft.  to 7: 34 ft. 
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SECTION 6 

SUMMARY 

In the opening paragraph of Section 1 v.e advertised four methods 

of solving Eq.   (1-1) for the Spherical Error Probable.     We have 

described those four methods in Sections 2 through 5.    We have 

showed how a SEP can be calculated by approximation,   paper and 

pencil,   computer,   or graph. 

Our four methods of computing the SEP are not distinctly differ- 

ent.    Lilliefors1 solution of the probability integral,  for example, 

underlies each of the methods presented in Sections 3,  4 and 5.    The 

same iterative procedure is used in the search for the SEP.    We have 

identified the methods separately,  however,   because different com- 

puting took   - paper and pencil,  computer or graph - are used in 

finding the SEP.    The associated computation times also differ 

markedly. 

This paper is not an exhaustive survey of methods for computing 

the SEP.    There probably exist more efficient computer solutions to 

the probability integral,  Eq.   (1-1).for example.    We have only 

described,  herein,  four methods which the authors have found useful 

in making many repetitive SEP calculations for multiple or time 

varying sets of standard deviations. 
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APPENDIX A 

ESTIMATING THE SEP WHEN   0    = mo 
y        x 

A. 1 Outline of the Estimation Method 

In Sec.   2 we showed how the SEP (or SEP/ 0,) could be estimated 

in the special case where two of the standard deviations were equal. 

In this appendix we develop a method for estimating the SEP when 

0     = mo   ,   m ^   0,   1.    The method uses the SEP/a    curve presented y x z r 

in Fig.   2.1. 

For purpose of example we will only do calculations for the case 

when    o   r 2o  .    Similar calculations,  however,   can be applied when 
y x 

m = 0. 5,   3,   4,   5 .   .  .  .    In the following paragraphs we approximate 

the SEP/0    curve for 0 y « 2ox by calculating the SEP when 

(1) 0
X is small compared to0z. 

(2) a    is large compared to o  . 

(3) ox equals 0^. 
i 

(4) o    equals 0. 5oz. 

A. 2 The SEP for o   = 2 ox and ox Small 

In Sec.   2.2 we noted that the three-dimensional probability dis- 

tribution looked like a one-dimensional distribution when o    and o 
Y x 

were equal and much smaller than^^.    The same situation occurs 

when  o    = 2ox and   ox is small.    In the limit,  as   ox/o ^approaches 
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zero,  the probability density function becomes one-dimensional in the 

variate z.    The SEP is given by the equation: 

SEP   =o.674oz (A-l) 

when  o  /o    =0.    In normalized form the ratio,  SEP/o ,  is just 0.674. 
x    z * 

This is the same value calculated in Sec.  2.2.     SEP/0    = 0.674 is z 

plotted as a point at   a /o    = 0 on Fig.  A. 2. 

A. 3 The SEP for ov   =   2o    and QV Large 

For ov = 2o    andov large compared too   ,   the density function, y x *       - z 

f(x,  y,  z) looks like a two-dimensional distribution in x and y.    The 

SEP is equal to the CEP defined in Sec.  2. 3.    The SEP is calculated 

from Eq.  (A. 2): 

SEP = CEP = 0.59 (a   +o   ) (A-2) x      y 

If we substitute 2ox for Oy,  add,  and then divide by a z, the familiar 

normalized function, SEP/02,  results: 

^=»•"^2. (A-3) 
z z 

Equation (A-3) says that when o    ' ^o    and a x/ oz is much greater 

than 1,  the SEP/o z curve approaches a straight line.    The line has a 

slope of 1.77 and a zero intercept at ox/ oz = 0.    This line is plotted 

on Fig.  A. 2. 
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A. 4 The SEP for o     = 2o     = 2o_ 
 _I * t 

When 0y = 2o    and ox equals oz,  the SEP can be estimated by 

using Fig.  2. 1 and interchanging the subscripts on the standard devia 

tions.    Figure 2. 1 was plotted under the assumption that o     =   ox.    in 

this new case we have,  instead,  o    equal to o   .    If y and z are inter- 

changed wherever they appear on Fig.  2. 1,   we get Fig.  A. 1 and a 

direct solution for the SEP. 

5 ■ 

4 " 

SEP 

0 

/ 

2 " 
/ 

■r 
l 

T 
4 

Slope - 1.18 

6 

Figure A. 1 The predicted SEP/ay curve whenox = o 

At the point where   ox/o      = 1/2 we read that: 

SEP/o      =    1.5382 (A-4) 
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Multiplying Eq.   (A-4) by the ratio av/az = 2 produces our familiar 

normalized function > SEP/o1,  and we have 

SEP/oz = 2 X 1.5382 = 2.0764 (A-5) 

This point is plotted on Fig.  A. 2 at av/a- = 1. 

A. 5     The SEP when o., = o_ = 2ov 

A final point can be found on the SEP curve for o    = 2QV when 
y       *■ 

ox - 0. 5qz.    As in Sec.  A. 4 we find this point by re-plotting Fig.  2. 1. 

The plot is not reproduced here.    We interchange the x and z sub- 

scripts on the standard deviations and find that the SEP/ox = 2. 58 at 

0z/ox = 2- 

The function,  SEP/ox,  is changed to our standard form through 

multiplication by the ratio o  /a    =    1/2.    Eq.   (A-6) results. 

SEP 
0z •m™HHi&'" 

The point,  SEP/oz = 1.29,  is plotted on Fig.  A. 2 at. ox/0z = 1/2. 

We now have sufficient data to draw in the rest of the SEP/o    curve. z 

A. 6     The SEP/o    Curve for o= 2o z y        x 

The points and the line found in Sec.  A. 2 through A. 5 appear 

on Fig. A. 2. 
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SEP 

Figure A. 2.     The predicted SEP/a     curve for0     = 2o z y x 

A dotted line is drawn to connect the points and complete the curve. 

The SEP can be estimated from this curve in the special case when 

oy = 2ox. 

By analogous methods the function SEP/a     can be graphed for any 

combination of o„ and ov; i. e. ,   for ov = mo  : m = 0. 5,  2,   3,   .  .  .  . y * y x 

When m = 4,  for example,   the approximate SEP/a   curve is generated 

by using the curves for m = 0,   1,2,  and 3. 
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APPENDIX B 

THE MATHEMATICS IN THE ITERATIVE 
SOLUTION FOR THE SEP 

B. 1 Lilliefors' Solution for P 

Our iterative solution for the SEP is based on a series solution 

to the integral equation: 

R   \R -z VR
2
-

2
 -y 

P = 
1 

(2*)3/2axayoz 

exp 
i/2 2 2\ 
i f x  + y  + z   1 dx dy dz 

R -yfcZJ -ytfT7 (B-l) 

The series solution was reported by H.   W.  Lilliefors in Ref.  2. 

For R - 1 and   o   £ c    ± a   ,   Lilliefors' solution for P has the form; x       y        z 

/  ..(n+l)     , 

n-1      (n+l)0   (2n-l)a    a        " 
v x    2      J   ui 

(J+n+±)...(j+7) 2'   J 

Izil 
j[j!(2o22)J 

(B-2) 

For   0x =  0    = o^ = o,  the probability integral can be solved by 
a series expansion of the integrand in Eq.   (A-l).    For this case, 
J.  S.  Toma has reported that the SEP equals 1. 5382   . ^ 
same answer is derived from Lilliefors' Eq.   (B-2). 

The 
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This solution is correct for   a_ ^= 0.    If  0    = 0,   P is computed from z z 

the expression: 

-     (-D^'VC,..» 
E   ——U&TJ 

2'   ' (B-3) 

n-i     2n  0y 0
X 

n! 

The factor,   <*.  {Cy.n), appears in both Equations (B-2) and (B-3). 

aj (C2,n) is calculated from the following recursion formulas: 

«j (C2.n) = a   a2 (C2,n) + bß2 (C2.n) 

a     (C2. n) = 1   when m = n 

a m (C2,n) = aam + 1 (C2,n) + bßrn+1(C2.n) when m =£ n 

ß     (C?,n) = 0   when m = n 

ßm<C2'n) =[i2^j[b«m+1(C2.n)+afltn+1(C2.n)J    when m ^  n 

\ {C2.n) =0 

The constants a and b in the recursion formulas are defined by 

the equations: 

1       2 * 
a = 1 +r-  (k    -1) 

\ c 

I b=i(k2-l) 

X 

*       This expression for "a" is a correction to the expression in 

 1 2 
Ref.  2.    The equation in Ref.  2 is:   a f 1 +        2 (1-z  ). 

4ov 
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B. 2 The Partial Derivative 

The iterative solution for the SEP requires successive estimates 

for R,  the spherical radius.    The computer program calculates the 

successive estimates by using the first partial derivative of P with 

respect to R.    In this section we show how the partial derivative is 

calculated from Lilliefors' series solution for P. 

Lilliefors' solution,   Eq.   (B-2),   can be rewritten in the form: 

p = c, S   (2n-i) • £    2 ; (B-4) 

The standard deviations,    0   ,   o    and   a    are normalized in this x       y z 

expression.    If   0  ,   a    and   0   are redefined to be the non-normalized x       y z . 

deviations,   Eq.   (B-5) results: 

p = c, y;     . Q ^  . T, Nin,
t

j) (B-5) 

We next create Eq.   (B-6) by rearrangement of Eq.   (B-5). 

P   =   C,   V   R^lllQJn)      , v R2J N (n. j) (B.6) 

^    o(2n-1)ox   0z        ^        a^J n Oy X Z J Z 

Lilliefors' solution is now in a form where we can take the deriv 

ative.    Before taking the derivative,   however,   it is instructive to do 
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a partial expansion of Eq.   (B-6).    The first three terms in both series 

appear in Eq.  (B-7). 

P = 
C^R Qd) 

"O     0      Ö y   x    z 

R2 R4 

N(1.0) +   N(l. 1)  J-J   +   N(1.2) —^ 

~1  
0y    0x 0z 

R2 R4 

N(2. 0) + N(2, 1) ^ + N(2. 2)-^-j 

9. *■ 

♦       C1R     Q(3) 

o   5 o      o y     x    z 

2 4 
N(3.0) + N(3. 1)^    + N(3.2) L^ 

0z o_ 

(B-7) 

If we now take the first partial derivative of P with respect to R,  Eq, 

(B-8) is formed: 

OR        Ox ^ az 
RZ R4 

N(1.0) + N(l. 1) ^V + N(1.2)-^_ 
0 0Z 

z 

I   - 
y 

ci-Tox % 

D2 4 

N(2.0) + N(2I l)il_  +   N(2.2)R     • 

0y5ox % 

2 4 
N(i.O) + N(3. D^-j + N(3,2)i? 

oz z 
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+   C1Q(1)R- 

0y    ax  az 

2R N(L1) + 4R3 m^L 

+   C1Q(2)R:3 

ay3 öx 0 2 
a  t a,4 

C1Q(3)R 

öy5 0x  02 

2R 
N(3. 1) 

o  2 
z 

+   4R 
3 N(3.2) 

(B-8) 

Equation (B-8) contains four infinite series.    The equation can be 

rewritten into Eq.   (B-9),  a compact statement that describes the 

series in summation form: 

ÖP r      ~   (2n-H) R      Q(n) ^^   , 

OR n-1  ^ 

N(n, j) R 2j 

0x   % j-0 

•»• c 
(2n+l) 

~    R Q(n) 
L    (in-n  
n-1  V 0x0z 

f   2i   R^^Wj) 

j-0 oz^ 

(B-9) 
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If we now multiply and divide the first and last series in Eq.   (B-9) 

by R,  we produce the expression: 

OP. = _£l_      -     (2nM) R(2n+1)Q(n) " N(nt j) R2j 

aR R      ^1 (2n-l) #    f-n S/l n«l     o   x '00 i«0 z 
y x      z 

4Ci E,—(ZITTJ—• R h i}—-?} n=l     o x '00 j=0 0   " 
y       x ' z      (B-10, 

Equation (B-10) can be used to calculate the   ^P/^R at any given 

value of R.    For our computer application,  however,  computation 

time is saved by noting that Eq.  (B-10) resembles Eq.  (B-6).    In fact, 

if we rewrite Eq.   (B-6) in the form: 

P = Ci 2;A(n) ,5B(n.j) (B-ll) 
n j 

we can write Eq.   (B-10) as: 

If. =   Cl2liiliL)    A(n).2B(n.j) 
OR n     R j 

+ C, 2 A(n)#  2   -^B(n,j) (B-12) 
n j     R 

Equations (B-ll) and (B-12) show that the two series,    Z A(n) and 

?B(n, j),  are common to the solutions for both P and the   dP/^R. 

Given 0      0    ,   o    and an estimate for R,   both P and ^P/dR can be 
*      y       z 

calculated from only one solution for the two infinite series. 
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APPENDIX C 

A COMPUTER LISTING WITH DATA 

C. 1 The SEP Computer Listing 

The following CDC 3600 FORTRAN program mechanizes the SEP 

calculations outlined in Sec.  4. 

PROGRAM SEP 
(>••• THIS PROGRAM COMPUTES THE SEP FOR A PROBABILITY OF ,3 

cOMMON/S/R.sx.SY.sz.oR.ox.Dy.DZ.rR.rx.rY.rz.xN.xK.c? 
*.irLAG 
C0MH0N/BLK/ SUHP   ,ALPHA(a0.60)«BETA(80*eO)«SIGX,SIGY. 

•SIGZ 
COMMON/X/ SIQ(300).R9(300).TIM(300)iPR(300) 
K>0 
PN«.5 

C****READ CARDS 
10    CALL READ 

NMN 
SIZ-SZ 
IMEOr,60)1000.12 

C* SET RADIUS TO BE MlN POSSIBLE VALUE AND YET INSURE CONVERGENCE 
12 R«MlNir(SX/.2.SY/.2.SZ/.2) 

I«0 
IFCSY.EQ.O) GO TO 60 
SIGX-SX/R S SIGYaSY/R S SIGZ*SZ/R S XKBST/SX S C2«XK**2-l 
CALL ÄLPH(N#C2) 

13 CALL PROB(N.P.SP) 
IF (IFLAQ.NE.0) GO TQ 14 
KBK^I 
IF(P.LE..501.AND.P.GE..499.OR.K.QT.20)GO TO 15 
RsR.(P-PN)/SP 
S1GX-SX/R | SIQY*SY/R S SIGZ-SZ/R 
GO TO 13 

C**** STORE  ONLY THOSE VALUES WHICH CONVERGE 
15    IF<K.GT.20) GO TO 14 

I«I*1 
C***** STORE VALUES TO BE PUT ON TAPE TO BE PLOTTED 

TIM(I)«I 
PR(I)«P 
R5(I)«R/SZ 
SIG(I)«SX/SZ 

159   K«0 
SZ*SZ«DZ 
SIGZ«SZ/R 
ff(SZ.LE.FZ)GO TO 13 
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C*** WRITE TAPE 
C**** WRITE ON 49 
16   WRITE (10.S).I 

WRITE(10*9) 
WRITE{10).(TIM(K),SlO(K>.R5<K).K»l,n 
END TILE  10 
PRINT 2.SX.SY 
PRINT i. (SIG(K),R5(K),PR(K),«•!.I) 

2    TORNAT (1H1,//30X,«SIQX ■ ♦.E20.10. 10X*«SIQY ■ «.E20.10) 
1    FORNAT (lOX.*SIGX/SI02*illX.«CEP/SI02*.iax.♦PROBABILITY*,/. 

•(3^20.8)) 
SZ>IIZ 
8Y»SY*DY 
ir(SY.LE.rY)OOTO 12 
GO TO 10 

14   RtHlNlP (SX/.a.SY/^.SZ/.a) 
SIQX*SX/RSSIQYaSY/R 
GO TO 199 

60 R«MlNir(SZ/.2*SS/.2*l.) 
KK«0 
SIQXBSX/R 

9I6Z>SZ/R 
61 XKaSZ/SX 

C2*XK**2*1 
CALL ALPM(N»C2) 

62 PN«! 
8Jl«-l 
PY«PPY«0 
DO 69 K>i,N 
8Jia-l*SJl 
PN«rN*K 
9I«SJ1*ALPMA(1,K)/(FN«2,*«K«SIQZ«*(2*K-1)*SIGX) 
SIP»8!*2 •!</» 
PY»PY*SI 
IFUB6r(SI/PY).LT.iE«8) 60 TO 66 

69 FPV»PPY*SIP 
66   I'(PY.QT..901.OR.PY.LT.,499.AN0.KK.LT.20) 60 TO 70 

IF(KK.QE.20) GO TO 69 
I«I»l 
R9(I)«R/SZ 
SI6(I)*SX/8Z 
TIHd)«! 
PR{I)«PY 

69  S2«SZ*DZ 
IFtSZ.GT.FZ) 16*60 

70 RtR-CPY-,9)/PPY 
KKaKK«l 
SI6X«SX/R 
8I6Z>SZ/R 
60 TO 62 

1000 RETURN 
8 FORMAT (•ID**92X,*04I000003*I3.6X) 
9 F0RMAT(*RADIUSSI6 •) 

END 
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,ALPHA(60,SO).BETA(eo,80),SIQX,SIGY« 
rUNCTION SUHJd) 
COMMON/BLK/ SUMP 

•SIGZ 
C0HH0N/S/R(15) 

♦.IFLAG 
SUHjaSUMPsQ 
sji«-isrj«i 
DO 20 JJ-1.100 
J«JJ-1 
0J»J*.5 
DO 10 K«i,I 

10   DJ"(J*K*.5>*DJ 
rj»rj«j 
ircrj.EQ.orj«! 

SJl»-l*SJl 
S   «i/(rj*(2*SIGZ*»2)«*J*DJ)*SJl 
IF(SUHJ  .NE.O.AND.AISftS/SUHJ  ).LT.lE-a) GO TO 21 
PS"S*2*J/R 
SUMP   «SUMP   ♦PS 

20 SUMj  =SUMJ  ♦S 
IFLAG «1 

21 CONTINUE 
1     FORMAT (//,(5E24.10n 

RETURN 
END 

10 
9 
11 

SUBROUTINE PROB(N,P,|P     ) 
COMMON/BLK/ SUMP   .ALPHA(60'80)tBETA<80.80)iSI6X,8lGV» 

• SIGZ 
C0MM0N/S/R(19) 

••IPLAQ 
DATA(TWO PI >.7978849808    ) 
SP*SN«0 
IFLAQiO 
SJ1«-1 
DO 10 1»1.N 
SJla-l.*SJl 
S»ALPHA'l.|)/(2.**<I*l>*SIGY«*C2*I-l)«SIOX»SIGZ)*SJl 
STaS*SUMJ(n 
irnriAG.NE.o) GO TO 9 
ir(SN.NE.0.AND.A8Sr($T/SNJ.LT.lE-8)QO TOll 
SN*SN*ST 

SP«SP*SUMP  •S*S*(2«l*l)/R «ST/S 
IFLAQtl 
SPaTHOPl*SP 
P*TWO PI*SN 
RETURN 
END 
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10 

«ALPHA(80.SO)«BETA(IO,SO}|S!QX,SI6V* 
SUBROUTINE ALPH(N.C2) 
COMMON/BLK/ SUMP 

*SI6Z 
A«C2*.5^1 
B«C2*.5 
M*N 
DO 9  Ial«N 
ALPHA (I,l)«l 
IETA(M)>0 
DO 10 K«liN 
M«M-1 
DO 10 I"1'H 
ALPHA( M*K)«A«ALPHA( 1*1. I*K)*8*BETA( I*l» I*K) 
■ETACM*K)«<I-1)/1MB*ALPHA(I*1.I*K)*A*BETA<I*1.I*K)) 
PETURN 
END 
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SUBROUTINE READ 
C0MM0N/S/R(13),XK,C2 
READ 1«(R(I)*I*1«13) 
PORMAT(9Eli.O) 
END 
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C.2     The SEP Computer Data 

The following computer data were used in plotting the normal- 

ized curves in Fig.  5.2. 

S1GX     =     1.0000000000+000 SIGY    = 
SIGX/SIGZ 

5.00000000 
3.33333333 
2.50000000 
2.00000000 
1.66666667 
1.25000000 
1.00000000 
0.71428571 
0.50000000 
0.40000000 
0.30303030 
0.20000000 
0.12500000 

SEP/SIGZ 
3.52434371 
2.49730070 
2.01914995 
1.74079638 
1.55608473 
1.32148778 
1. 17740951 
1.00505711 
0.87033511 
0.80761956 
0.75115376 
0.70566641 
0.68627760 

SIGX 1.0000000000+000 SIGY    = 
SIGX/SIGZ 
5.00000000 
3.33333333 
2.50000000 
2.00000000 
1.42857143 
1.00000000 
0.50000000 
0.30303030 
0.21276596 

SEP/SIGZ 
4.47047233 
3.08410623 
2.42161704 
2.03818181 
1.60964950 
1.28884041 
0.90782976 
0.76708754 
0.70835663 

SIGX   =       1.0000000000+000 SIGY 
SIGX/SIGZ 
3.33333333 
2.50000000 
2.00000000 
1.66666667 
1. 11111111 
0.50000000 

SEP/SIGZ 
4.05597236 
3.12140967 
2.57805305 
2.22537530 
1.65177576 
1.01956866 

0.0000000000+000 
PROBABILITY 

0.49933981 
0.49946628 
0.49985782 
0.49998594 
0.49999961 
0.49967369 
0.49999970 
0.49999860 
0.49993984 
0.49982800 
0.49971807 
0.49987442 
0.49999826 

5.0000000000-001 
PROBABILITY 

0.49999214 
0.49971674 
0.49951873 
0.49948691 
0.49960197 
0.49970528 
0.49980035 
0.49987596 
0.49943213 

l.OOOOOOOOOOfOOO 
PROBABILITY 

0.49999894 
0.49988051 
0.49982290 
0.49980750 
0.49985646 
0.49986146 
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0.30303030 
0.20408163 
0.12500000 

0.81937779 
0.73849930 
0.69841416 

0.49987971 
0.49993855 
0.49995652 

SIGX   =      1.00O0000000+000 SIGY   = 

' 

SIGX/SIGZ 
3.33333333 
2.50000000 
2.00000000 
0.42857143 
1.00000000 
0.50000000 
0.25000000 
0.20000000 
0.12500000 

SEP/SIGZ 
5.88984063 
4.47031812 
3.63206608 
2.70305127 
2.03910945 
1.28917711 
0.90802420 
0.83356676 
0.73662162 

2.0000000000-1-000 
PROBABILITY 

0.49993903 
0.49996898 
0.49994283 
0.49987570 
0.49985054 
0.49991805 
0.49994871 
0.49995688 
0.49996220 

SIGX   -      1.0000000000+000 SIGY   = 
SIGX/SIGZ 
2.50000000 
2.00000000 
1.66666667 
1.00000000 
0.50000000 
0.30303030 
0.20000000 
0.14925373 
0. 12500000 

SEP/SIGZ 
5.84261733 
4.72149463 
3.97779948 
2.54540426 
1.55325508 
1.16571314 
0.95555704 
0.85103799 
0.80578883 

3.0000000000+000 
PROBABILITY 

0.49921362 
0.49997504 
0.49996857 
0.49989433 
0.49992435 
0.49996313 
0.49997517 
0.49999301 
0.49981551 

SIGX   =      1.0000000000+000 SIGY 
SIGX/SIGZ SEP/SIGZ 
2.00000000 5.88878514 
1.42857143 4.27103567 
1.00000000 3.09053778 
0.50000000 1.81601062 
0.25000000 1.20446927 
0.20000000 1.07690612 
0.12500000 0.85402313 

4.0000000000+000 
PROBABILITY 

0.49977376 
0.49998488 
0.49995657 
0.49993425 
0.49997776 
0.49999859 
0.50078231 

SIGX   ■      1.0000000000+000 SIGY 
SIGX/SIGZ SEP/SIGZ 
2.00000000 7.14868648 

5.0000000000+000 
PROBABILITY 

0.49998480 
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1.42857143 
1.00000000 
0.50000000 
0.30303030 
0.20000000 
0.14925373 

5.14340312 
3.67950015 
2.08389447 
1.50347918 
1. 19483273 
1.02956778 

SIGX   =      1.0000000000+000 SIGY 
SIGX/SIGZ SEP/SIGZ 
1.66666667 7.04731527 
1.25000000 5.31645805 
1.00000000 4.29908555 
0.50000000 2.36071598 
0.29411765 1.63776678 
0.18867925 1.25671490 

0.49999067 
0.49998552 
0.49995018 
0.49997427 
0.50022996 
0.49939611 

6.0000000000+000 
PROBABILITY 

0.50021207 
0.49999518 
0.49999478 
0.49996830 
0.49997671 
0.50046639 
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